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 Abstract: - The aim of this work is to show that the use of a ray tracing method based on stratified Monte Carlo 

with cells of equal area and equal aspect ratio gives the most convincing results in room acoustic simulation. It 
is compared with three other methods: the first one is very close but simply uses equal area cells, the second 
one is a Monte Carlo importance sampling and the last one is a standard Monte Carlo where the values of the 
spherical coordinates of the rays are generated randomly. These methods have similar complexity and 
comparable implementation. The experimentation is conducted in three steps: calculation of the sphere volume, 
exploration for reflections paths in a hexahedral enclosure, evaluation of standard acoustic parameters (Lateral 
Energy Fraction and Deutlichkeit). By starting from the volume of the sphere, the integration formula of sound 
rays contributions to a spherical receiver is derived in a transparent and purely geometric way.  
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1 Introduction 
In the last third of the twentieth century, advances in 
computer technology have allowed a wide 
dissemination of ray tracing techniques, particularly 
in the areas of realistic rendering, lighting and 
acoustics [1]. The emergence of these techniques 
has accompanied the early development of CAD 
(Computer Aided Design) and computer graphics 
[2]. 

These methods are within the framework of the 
geometric optics and geometric acoustics [3]. [4] 
contains a formal proof of the equivalence of energy 
methods and ray tracing. Room acoustics deals with 
high frequency (typically in the band of 1000 Hz) in 
very large scenes (tens of meters in a concert hall, 
and even hundreds of meters in urban acoustics). 
Thanks to the progresses in numerical methods and 
the increasing power of computers, the application 
field of Finite Element Methods extends regularly, 
but as ev idenced in [5], [6] and [7] among others, 
ray tracing methods remain significant. The history 
of this research field available in [8], an historical 
reference is given in [9] and the base of the present 
development is explained in [10]. 

This article proposes to introduce the discussion 
on the very particular problem of how to trace sound 
rays to simulate a p erfectly omnidirectional point 
source, illustrating and evaluating the issues in the 
field of room acoustics more specifically associated 
to specular reflection. 

In Section 2, t he options for defining such a 
source are analyzed. Two deterministic and four 
random methods thus arise, involving the three 
families of Monte Carlo methods: standard Monte 
Carlo, importance sampling and stratified sampling. 

In Section 3, these methods are tested and 
compared on a simple geometric problem: the 
calculation of the volume of the sphere. This 
calculation is completed by tracing rays from inside 
or outside sources. Section 4 assesses the ability of 
the methods in finding specular reflection paths in a 
very simple enclosure. Section 5 discusses the 
evaluation of two typical parameters of concert halls 
acoustics: Lateral Energy Fraction and Deutlichkeit. 

 
 

2 Omnidirectional Source Simulation  
In the standard Monte Carlo method, rays are traced 
from the center of a unit sphere and their directions 
(expressed by two angles in spherical coordinates: 
latitude and longitude) are randomly selected. This 
is equivalent to shoot randomly in the rectangle of 
the “plate carrée” projection of the sphere [11]. This 
method leads to a too high density of rays pointing 
toward the poles. 

The best way to overcome this deficiency is to 
weight latitudes according to the distance of the 
points of the sphere to the plane of the equator. This 
is equivalent to shoot randomly in the rectangle of 
the equivalent cylindrical projection [12], also 
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called cylindrical equal area projection [11]. This 
method, which can be called importance sampling, 
is a v ariance reduction one. Such approaches are 
based on the observation that certain values taken by 
a random variable in a simulation have more effect 
than others on the desired estimator [13]. Both 
methods are summarized in Table 1. 

In the stratified sampling Monte Carlo methods, 
rays’ initial angles are selected not on the whole 
surface of the unity sphere, but inside cells whose 
union covers the sphere. The first step of these 
methods is therefore to mesh the sphere. 

The action of creating a mesh will automatically 
provide the means to organize several deterministic 
ray tracings generated on the nodes or within the 
mesh, even if it is possible to generate uniformly 
distributed points on t he sphere without using 
meshes. 

Table 1: Random calculation of the rays’ directions 
Pseudo code to define N random spherical coordinates 

on a hemisphere 

Random numbers x = random (N,1) 
y = random (N,1) 

Generation of latitude α and 
longitude ϕ  in standard Monte 

Carlo 

α = x π / 2 
ϕ = y 2 π 

Generation of α and ϕ in 
importance sampled Monte Carlo 

α =  arcsin(x); 
ϕ = y 2 π 

On the basis of meridian arcs and parallel 
segments, built so as to have equal lengths, it is 
possible to generate sequences of points like in 
Fig.1a. Stenseng, quoted by [14], first defines the 
number of parallels on which the points will be 
distributed. Therefore, to obtain about 500 points, it 
is necessary to impose 14 parallels, giving 492 
points, or 15 parallels, which would give 572 points. 
It is not possible to obtain an intermediate result. 

To preserve the uniformity of the stratified 
Monte Carlo ray tracing, it is possible to impose 
cells of equal area. This led to various methods, 
including those based on regular polyhedrons, as in 
[15] and [16], but these approaches are limited by 
the fact that there are only five regular polyhedrons. 

Other methods are based on a sphere meshing 
built on arcs of meridians and parallels. In the sky 
dome model [17], the design of the tiles is based on 
maximizing inscribed circles size in order to design 
scanners for sky luminance studies. In the proposed 
solution, the author reaches a very good coverage of 
the hemisphere by circles arranged along parallels. 
In [18], the mesh definition is based on the analogy 
with how to make igloos from almost identical snow 
bricks also arranged along parallels. 

To build equal area cells, it is convenient to use 
the equal area projections of the sphere. The best 
known are the projection of Lambert [12] or the 
cylindrical one [19], whose 3D view is shown in 
Fig.1c, or the circular one [20], two 3D views of 
which are shown in Fig.1b and 1d. The last is the 
only one where the number of cells can be imposed 
exactly. 

Looking at the two top domes in Fig.1, we note 
that Fig.1a has as many points as Fig.1b has cells, 
and it is clear that both have almost the same 
arrangement of points or cells. 

The equal area (EA) meshes of Fig.1c and Fig.2a 
are congruent (except for the polar cell), while the 
two other meshes are not. For a nearly N cells mesh, 
we suggest to define the following n x m mesh, 
which exactly fills the hemisphere with a total 
number of cells: N = nm + 1 and ensures a very 
homogeneous distribution of elements: 

intint
/ 2    ;    /  

egereger
n N m N n= =              (1) 

The mesh computed with (1) is systematically 
adopted in this publication when EA model is 
concerned. For 500 c ells required on t he 
hemispherical mesh, the found network is given by 
the relation: 33 x 15 + 1 = 496. 

 
Fig.1 Four cells configurations: 1a and 1b: 492 points or 
cells, 1c and 1d: 496 cells 

If congruence is not imposed, there is an 
additional degree of freedom to generate the mesh. 
We therefore propose to require that the aspect ratio 
of these cells on the sphere should be as close as 
possible to unity. For this reason, this kind of mesh 
is denoted EAR (equal aspect ratio). 

This proposal was suggested by Tregenza [17], 
who sought to inscribe in each cell a circle with the 
maximum diameter. It has been developed in detail 
[20], by introducing a simple physical criterion: the 
covering index. This clearly shows that in the EA 
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model of Fig.1c, the aspect ratio is generally poor, 
except in the upper area of the circles 3 and 4 
(Fig.3a). In the EAR model in Fig.1b and Fig.1d, the 
ratio is very good everywhere (Fig.3b). Note that, 
according to [21], the aspect ratio is optimal when 
the inscribed circles hit the four sides of their cells, 
which is the case in most of the cells in Fig.3b. 

 
Fig.2 Equal area Lambert cylindrical projections, 2a: 992 
EA cells, 2b: 992 EAR cells 

 
Fig.3 Coverage index = 0.25 for EA cells (3a) and 0.58 
for EAR cells (3b) 

 
 

3 Volume of the Sphere 
 

3.1 Spherical pyramids 
The first given example is that of evaluating the 
volume of a sphere. This example is representative 
of calculating not only convex solids, but also any 
volume, either in one piece or not. This procedure, 
which is not necessarily very effective, has the great 
advantage of calling only extremely simple 
geometric operators. These operators only need to 
be able to calculate the intersection of a line with a 
surface patch.  

The volume of the sphere is calculated by adding 
the volumes of pyramids built on the spherical rays 
cast from the source located at any interior point. 
When tracing N rays in the unit sphere, if each of 
them corresponds to the same solid angle, it gives 
for the N spherical pyramids: 

2
3

1 1

4 4 
3 3

N Nt tSphere volume t
N N
π π

= =∑ ∑          (2) 

 
Fig.4 Spherical pyramids from an interior point, same 
solid angle and same axis 

This process is shown in Fig.4, which shows two 
opposing cones that can be interpreted as pencils; 
they come from a p oint inside the sphere. The 
opening of the conical surface of Fig.4 is 1/20 
steradian. The axis of the surface represents the two 
opposite rays traced from the source. The length of 
these rays is called t; for a uniform tracing of N rays, 
the base of each spherical pyramid is equal to 4π/N 
steradians. With an opening of 1/20 steradian, 80 π 
rays could cover the whole of the spherical surface, 
provided that there is no overlapping pencils. 

 
Fig.5 Spherical pyramid built from an external point  

When the source is located outside of the sphere 
(Fig.5), the solution is calculated according to the 
same principle as in (2), but, this time, a ray is taken 
into account only if it intersects the sphere twice. 
The solution is then obtained by calculating the 
difference between the two pyramids built on the 
ray. Of the N rays, n intersect the sphere twice, at 
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points located at distances ti and to (with to > ti) from 
the source. Therefore: 

( )3 3

1

4  = 
3

n

o iSphere volume t t
N
π

−∑  (3) 

The ray tracing methods are compared with each 
other in calculating the volume of the sphere by 
moving the source from the center to the outer 
surface. Regardless of the way followed to achieve 
the ray tracing, the result is equal to one when the 
source is at the center of the sphere. In the standard 
Monte Carlo, the result is rapidly deteriorating when 
the source moves away from the center of the sphere 
at a distance greater than one quarter of the radius, 
while in the importance sampling Monte Carlo, it 
remains remarkably stable regardless of the position 
of the source. 

The poor result for the standard Monte Carlo 
method is due to the fact that the number of rays 
shot to the poles is much too high, resulting in 
significant bias regardless of the number of rays. 

When tracing one million rays, as for the results 
listed in Table 2, the stratified Monte Carlo methods 
respectively give maximum errors of 2 10-4 % (EA) 
and 1 1 0-4 % (EAR), much lower than the error 
achieved in the importance sampling (MC 
importance). 

To test less favorable conditions, we chose to 
compare the four methods with only 1000 r ays 
(Table 3). As expected, the standard Monte Carlo 
(MC standard) gives poor results while the other 
three are very satisfactory, with less than 1% error 
for stratified methods. 
Table 2: Comparison of Monte Carlo methods 

Monte Carlo methods, 106 rays  
Distance to the 
center / radius 

MC 
standard 
Error in  % 

MC importance 
Error in  % 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

         0 
    0.375 
    1.494 
    3.329 
    5.829 
    8.925 
   12.516 
   16.468 
   20.596 
   24.627 
   28.055 

         0 
   -0.04  
   -0.07  
   -0.10  
   -0.11  
   -0.10  
   -0.09  
   -0.06  
   -0.01  
    0.04  
    0.12  

In conclusion, the stratified methods and the 
importance sampling method always give good 
results in this first test starting from an interior point 
of the sphere with, however, a net benefit to the 
stratified methods, and among these, a slight 
advantage for the EAR one. We observe the 

hierarchy: EAR, EA, MC importance and MC 
standard in decreasing quality of the results. 
Table 3: Comparison of the four Monte Carlo methods 

Error in  %  for the Monte Carlo methods - 1000 rays  
(Distance to 
center)/radius 

MC 
standard 

MC 
importance  

E
A  

E
AR  

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0 
0.46 
1.65 
3.51 
5.98 
8.95 
12.30 
15.89 
19.48 
22.80 
25.30 

         0 
   -0.31  
   -0.55  
   -0.68  
   -0.68  
   -0.54  
   -0.21  
    0.32  
    1.07  
    2.07  
    3.37  

 0 
0.09   
0.19  
0.29 
0.39  
0.49  
0.59  
0.69  
0.79 
0.88   
0.99  

  0 
0.06     
0.12     
0.17     
0.22     
0.27     
0.32     
0.38     
0.43     
0.49     
0.56  

 
 

3.2 Accuracy of the random method 
To evaluate the performance of a Monte Carlo 
method, one carries out a number of tests under the 
same conditions and calculates the variance and 
standard deviation. Assuming that N tests produce a 
series of results xi: 

 ,  1 , ix i N=                           (4) 

The average is calculated: 

           
1

1 N

i
i

x x
N =

= ∑                           (5) 

The standard deviation is defined as:                      

             ( )2

1

1 N

i
i

x x
N =

−∑                          (6) 

For testing, graphs are built in different 
configurations. They show the value of the function, 
the average (thick broken line) and two continuous 
thick lines located above and below at a distance 
equal to the standard deviation. Fig.6 shows the 
evaluation of the sphere volume referred to the unit 
sphere one. An average of 1 and a v ery small 
standard deviation are expected. Although the 
source is located in an unfavorable position (right on 
the sphere surface), the solution is excellent in the 
case of the EAR method. 

For all these simulations, as there is a stable 
value of the variance from about thirty trials, it was 
decided to perform systematically a m inimum of 
fifty tests. For this experimentation, one hundred 
tests are performed. The relative mean volume is 
equal to 0.999 and its standard deviation to 0.0056. 

With the same number of rays, the EA solution is 
a little worse (Fig.7); the standard deviation is 
0.0076 instead of 0.0055. For the stratified Monte 
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Carlo with 100 trials and 1000 rays, the standard 
deviation is less than 1%, and a l ittle better when 
cells of the same aspect ratio are used (Fig.6 and 
Fig.7). 

The MC importance method gives similar 
results (Fig.8). The standard deviation is now 
equal to 0.0077, similar to the previous one. 

 
Fig.6 Statistics for 100 tests of 1000 EAR cells  

 
Fig.7 Statistics obtained in the 992 EA cells 

 
Fig.8 Monte Carlo method based on importance sampling 

 
 

3.3 Evaluation from an outside point 
In the following sequence of tests, the volume of the 
unit sphere is calculated in several configurations 
obtained by moving the source from its center to a 
distance of five times the radius of the sphere. Two 
stratified sampling Monte Carlo methods are 
compared to their deterministic version based on the 
same mesh. 

The EAR and EA methods are very close, but the 
first one is usually a little better than the second one 
(Table 4). It is interesting to note that in the 
comparison of the deterministic versions with 10000 
rays, the EA method is better than the EAR one. This 
can be explained by a better configuration of EA 
cells in this particular case. But note that the 

difference between the two solutions is minimal 
(0.3%), and that the random ray tracing 
corresponding to the same cells can give opposite 
results: 2.2% less for the EAR method.  
Table 4: Deterministic and stratified EAR and EA cells 

EAR and EA deterministic (det.) and stratified 
(strat.) Monte Carlo ray tracings. Gap in % between 
maximum and minimum found volumes for a source 
moving from its center to a distance of 5 radii  

N. rays EAR 
(strat.) 

EAR 
(det.) 

EA 
(strat.) 

EA 
(det.) 

1000 12.9 17.3 20.1 21.1 

10000 2.0  2.6 4.2 2.3  

100000 0.4  0.2  0.6 0.3 

106 0.05
3  

0.01
5  

0.05
8  

0.02
8  

In this example, for calculating the volume, ray 
trace becomes less effective from the outside than 
from the inside of the sphere. Gradually, as the 
distance grows, only the rays included in the cone 
encompassing the sphere contribute to the 
calculation of the volume. But this configuration is 
highly interesting, because it anticipates the typical 
case where a sound field is evaluated on a spherical 
receiver, as in the following sections of this paper. 

  
Fig.9 Sphere volume obtained with deterministic and 
stratified sampled methods (106 cells) 

All simulations of Table 4 have the same 
characteristic: the accuracy is very good up to the 
distance of 1, which corresponds to the surface of 
the sphere, and then it slowly deteriorates when it 
moves away. The test with one million rays is 
shown in Fig.9. The error is always less than half a 
thousandth of the volume. For the stratified and 
deterministic EAR cases, we obtain gaps between 
maximum and minimum value equal respectively to 
.04 % and .015 %. For the EA case, we have 0.084 
% and 0.028 %. 
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4 Searching the Number of Reflection 
Paths 
As stated in the introduction, many conventional 
applications of ray tracing, once considered obsolete 
because needing very long calculation times, again 
become accessible today thanks to the evolution of 
graphics cards. The paths method [22] seems to be 
part of this renewal, for real-time applications in the 
field of entertainment where one tries to obtain, in a 
very short time, a d iscrete echogram. When the 
method of images is unsuitable because of the 
complex geometry of the scene, this method 
provides an interesting alternative [23], as it can 
benefit from advanced techniques implemented in 
realistic rendering. 

In this study, we investigate the largest possible 
number of paths linking the source to the receiver 
by tracing a limited number of rays. A path is 
defined by the sequence of walls on which the ray is 
reflected. The purpose of this research based on the 
image’s theory is to reconstruct valid paths [24, 25]. 
Once identified, the paths can be used to define the 
echograms as in the method of images. 

The tests are performed on a t rapezoidal 
enclosure (Fig.10) defined by 6 normal vectors 
connecting the origin to the faces; In Matlab 
notation [-2 -1 0; 0 -2 0; 4 -1 0; 0 10 0; 0 0 -2.5; 0 0 
2.5]. In the same figure, the source and the receiver 
are located at both ends of the thick line. The source 
is located at the origin of coordinates and the 
spherical receptor in [1 .2 7]. The radius of the 
receiver is calculated by the formula, [26]: 

              
1/315

2
Vr
Nπ

 =  
 

                                (7) 

In this formula, V is the volume of the enclosure 
and N the number of traced rays. For the analyzed 
case, we obtain the radius r = 1.12 which is rounded 
to 1. 

 
Fig.10 Trapezoidal enclosure used for paths detection  

The process involves casting rays in all 
directions from the source. The rays are reflected on 
the walls of the enclosure and in sometimes intersect 
the spherical receiver. In these cases, we examine 
the route, that is to say, the sequence of walls on 
which the reflections have occurred. If the path is 
new, it is stored and the examination of the ray is 
continued. 

The statistics of the results obtained in 50 tests 
are summarized in Table 5. The numbers separated 
by a d ash represent the number of detected 
reflections (or possible images) and the number of 
tests in which this number has been found.  

The even columns show the proportion of cases 
lying in each category 40-50, 50-60, …,110-120.  

In the last row of the table, we observe that the 
mean number of segments is increasing from 62 for 
the standard Monte Carlo to 94 f or the stratified 
Monte Carlo based on EAR cells. 

The EAR stratified Monte Carlo method clearly 
shows its superiority over the others, even for a 
relatively small number of rays: 1000 in this case. 
Other tests were also made with less rays, but, on 
the one hand, they require a disproportionately large 
receiver radius and, on the other hand, the results 
are fairly unstable. In all the tests, the hierarchy of 
the methods of Table 5 is met: in descending order: 
EAR, EA, MC importance and MC standard This 
outcome corresponds to the inference previously 
attained in the calculation of the volume of the 
sphere. 

 
 

5 Acoustical Parameters in Enclosure 
To address the definitions of acoustic parameters, 
the sound intensity is evaluated in the ray tracing 
method. Going back to the formula (3), which gives 
the volume of a sphere, the development is 
performed as follows. Let note that the parameter t 
represents the distance from the source to the 
receiver surface. This parameter t is assimilated to 
the distance R from the source to the center of the 
receiver. Vr is its volume, N is the number of rays 
and n is the number of rays reaching the receptor. 

( )

( )( )

3 3

1

2 2

1

4= 
3

4
3

n

r o i

n

o i o o i i

V t t
N

t t t t t t
N

π

π

−

= − + +

∑

∑
                           

(8) 

By assimilating the sum of the second-degree 
terms to 3R2, we get: 
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2 2 23o o i it t t t R+ + =                    (9) 

By replacing to - ti by s, which is the length of the 
secant of the receiving sphere: 

2

1

4=   3
3

n

rV s R
N
π ∑                   

(10) 
Table 5: Number of paths detected with four Monte Carlo 
methods (50 tests, 1000 rays, 5 reflections) 

Number of detected paths 

Standard 
MC  

Imp. 
MC 

Stratified  
MC EA  

Stratified  
MC EAR  

 %  %  %  % 

49-1 2       

51-1 
53-5 
54-1 
57-2 
58-4 
59-5 

36 

     

 

60-1 
61-1 
62-5 
63-2 
64-4 
65-4 
66-4 
67-2 
69-1 

48 

64-2 
66-2 
67-1 
68-1 
69-2 

 
 
 
 

16 
 

 

  

 
70-1 
71-1 
72-1 
73-1 
74-1 
75-1 
77-1 

 

14 

70-8 
72-4 
73-3 
74-5 
75-2 
76-4 
77-3 
78-2 
79-6 

 
 
 
 

74 

 
72-1 
73-1 
74-2 
78-2 
79-2 

 
 
 
 

16 

 
 
 

75-1 
77-1 4 

 

 

 
 

81-1 
82-1 
84-1 
87-2 

 
 
 
 

10 

80-2 
81-2 
83-1 
84-1 
85-1 
86-4 
87-2 
88-3 
89-2 

36 

 
83-1 
85-4 
86-2 
87-4 
88-1 
89-3 

 
 
 
 

30 

 

 

  90-2 
91-5 
92-1 
93-1 
94-3 
95-2 
97-1 
98-1 
99-1 

34 

90-2 
91-2 
92-2 
93-2 
94-2 
95-5 
96-1 
97-4 
98-1 
99-1 

 
 
 
 
 

44 

 

 

  100-1 
101-2 
102-1 
105-1 
107-1 

12 

100-1 
102-5 
103-1 
104-1 
107-1 

 
 

18 

 
 

   
111-1 2 

112-1 
114-1 

 
4 

Aver.: 2 Aver.: 74 Average: 89 Average: 94 

 
Replacing the sum of the secants by their 

average: 

                    
1

 
n

n s s= ∑  (1) 

We deduce from (10): 

           2
1 4 4

r r

ns n s
R NV N V

π π
= =                          

(2) 
 

And so, with I, the intensity (Wm-2) and P the 
source power (W): 

     2

1
4 r

I n s
P R N Vπ
= =                                

(13) 

At the distance R from the source, for a spherical 
receiver of radius r, sound intensity depends on the 
source power P and the ratio n of the rays that 
intersect the receiving sphere to the total number of 
traced rays. It also depends on the weight coefficient 
s  of dimension (m-2) which is the ratio of the mean 
length of the secants and the volume of the spherical 
receiver. 

In practice, the sound level is expressed in 
decibels (dB): 

( )12
10 10

12
10 103 3

10 log 10 120 10log

3 310log 10 120 10log
4 4

I I

n s n sP P
N r N rπ π

= +

   = +   
   

(14) 

These developments do not take into account the 
time variable. Everything occurs as if the ray 
propagation was instantaneous. However, in 
acoustics, it is far from being the case. In the ray 
method, it is possible to reintroduce the time by 
taking into account the lengths of the rays, which is 
equivalent to sort them by time intervals. 

After introducing the time variable, the 
definitions of acoustic parameters can be addressed. 
Barron [27] defines the lateral energy fraction LF 
("Lateral energy fraction") which involves time 
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integrated intensities, for example 50
0E , which is the 

integral of the intensity between 0 a nd 50 
milliseconds. They are energy densities, therefore 
expressed in Joule m-2. The lateral energy fraction is 
an adimensional number smaller than one. 

( )

( )
[ ]

80 2 80

0 0

2
0

0

lat lat
p t dt E

LF
Ep t dt

∞ ∞= =∫
∫

               

(15) 
This function is taking into account the angle of 

the ray arriving on the receptor and the direct one. 
The energy is weighted with the sinus of the 
projection of this angle in the horizontal plane 
allowing the rendering of the laterality effect.  

Another acoustic parameter called clarity was 
introduced in [28] under the name of "Deutlichkeit". 
It is the ratio between the early energy (up to 50 
milliseconds) and the total one. It is also an 
adimensional number smaller than one [29, 30]. 

( )

( )

50 2 50
0 0

2
0

0

p t dt ED
Ep t dt

∞ ∞= =∫
∫

                    (16) 

A first test is performed to observe the behavior 
of these parameters wherein the number of 
reflections is varied. In the enclosure of Fig.10, we 
cast 10000 rays on a r eceiver with radius equal to 
0.5. All the walls have the same absorption 
coefficient equal to 0.5 and the EAR deterministic 
method is used.  

The global sound level increases with the 
number of reflections and approaches 70 dB (Table 
6). The LF becomes quite constant just under 32% 
and the Deutlichkeit under 86%. This level has 
already been reached for 6 reflections. 
Table 6: Acoustic parameters performance  

Number of 
reflections 

Global 
level dB 

LF % Deutlichkeit % 

1 66 16.8 100 
2 68 24.3 99.6 
3 69 28.4 96.8 
4 70 30.6 92.9 
5 70 31.6 88.9 
6 70 31.9 86.8 
7 70 32.0 85.9 
8 70 31.8 85.5 
9 70 31.8 85.3 

10 70 31.7 85.2 
…    
20 70 31.7 85.0 

The direct sound exact solution is given in watts 
by the formula (13) or in decibels by: 

( )12 210 log 10 log 11pL P R = − −                
(17) 

In this formula, P is the power of the source and 
R the distance from the source to the receiver (both 
are presumed point-wise). It is easy to verify that, if 
P = 0.001, the first term of the formula is equal to 
90 dB. For R = 10 meters, Lp = 59 dB. In the 
concerned enclosure, it is 62 dB. The delay is equal 
to 20 m illiseconds. In all the 10,000 ray tests, the 
direct sound level is identical to its theoretical value. 

The experiment follows with tests based on 
10,000 cells. The reflection coefficient is equal to 
0.5 and the number of reflections limited to 6. The 
sound levels are calculated in dB according to (14) 
which refers to a spherical receiver.  

In the tests carried out to characterize the 
methods of ray tracing, it turned out that the number 
of rays was very important, but not the number of 
tests. In fact, from 20 trials, a good stability of the 
results is obtained.  

In all the conducted tests, the usual hierarchy of 
methods is observed with respect to the standard 
deviation. We always see in Table 7 corresponding 
to tests involving 6 r eflections and an absorption 
coefficient equal to 0.5, an increasing standard 
deviation when following the same sequence as 
before: EAR, EA, MC importance and MC standard. 
Table 7: LF & Deutlichkeit 

Method 
10000 rays,  
20 tests 

LF Deutlichkeit 
Av. 
(%) 

SD (%) Av. 
(%) 

SD (%) 

EAR 32.84 0.25 86.2 0.40 

EA 32.87 0.97 86.2 0.47 

MC importance 31.74 2.22 86.2 1.28 

MC standard 31.46 2.42 85.9 1.47 
 
 

4 Conclusion and Perspectives 
As a r esult of the performed tests, the main 
conclusion is that one should always use the Monte 
Carlo stratified method based on cells of the same 
aspect ratio (EAR). This method always gives the 
best results in purely geometric tests such as sphere 
volume assessments using an internal or external 
source. It is also the most efficient in the search for 
reflection paths (approach used to recover images). 
Finally, in the case of acoustic parameters, it is more 
competitive than the other ones. It is as easy to 
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implement as any other and preserves the control of 
the number of cast rays. 

These features make it a perfect candidate for the 
solution of acoustic simulations of real time 
problems that require fast response time and 
therefore the smallest possible number of rays [23].  

The calculation of the volumes presented in the 
first part of the article not only allowed to classify 
methods in purely geometrical problems, but it also 
led to an elegant interpretation of the calculation of 
sound level based on the lengths of the secants of 
the receiver. 

The proposed meshes can provide the basis of 
developments in tracing pyramids as suggested in 
[19]. In these problems, we should replace the tiles 
based on meridians and parallels with tiles based on 
meridians and great circles. The optimized 
formulation EA as described in § 2 c an easily adapt 
to these situations since they are based on congruent 
meshes with equal areas (EA). Note that when the 
EA method is as well conditioned as here, it gives 
almost as good results as the EAR method.  

The last point to emphasize is that this new ray 
tracing method is likely to significantly improve the 
performance of algorithms making simultaneous 
uses of diffuse and specular reflection [31]. Indeed, 
for the diffuse reflection, as ray tracing is performed 
at several levels (actually, each reflection), the 
advantage of the EAR method has a multiplicative 
effect. 

 
 
References: 

[1] Appel A., Some techniques for shading 
machine renderings of solids, AFIPS 
Conference Proc. 32 1968, pp.37 - 45. 

[2] Sutherland I.V., Sproull R.F., Schumaker R.A., 
A characterization of Ten Hidden-Surface 
Algoritmms, Computing Surveys, Vol. 6, No 1, 
March 1974, 55 pages. 

[3] Kulowski A., Algorithmic Representation of 
the Ray Tracing Technique, Applied Acoustics 
18 (1985), pp 449 - 469. 

[4] Le Bot A., Bocquillet A., Comparison of an 
integral equation on energy and the ray-tracing 
technique in room acoustics, J. Acoust. Soc. 
Am. 108 (4) October 2000, pp 1732 - 1740. 

[5] Harari I., A survey of finite element methods 
for time-harmonic acoustics, Comput. Methods 
Appl. Mech. Engrg. 195 (2006), pp 1594 - 
1607. 

[6] Łodygowski T., Sumelka W.,  “Limitations in 
application of finite element method in acoustic 
numerical simulation”, J. Theor App Mech 44, 
4 Warsaw 2006, pp 849 - 865. 

[7] Thompson L.L., A review of finite-element 
methods for time-harmonic acoustics, J. 
Acoust. Soc. Am. 119 (3), March 2006, pp 
1315-1330. 

[8] Svensson P., The Early History of Ray Tracing 
in Room Acoustics, in Reflections of sound, 
Edited by Peter Svenson, NTNU, Norwegian 
University of Science and Technology, 2008, 
pp 37 - 48. 

[9] Beckers B., Borgia N., The Acoustic Model of 
the Greek Theatre, Protection of Historical 
Buildings - PROHITECH 2009, Roma, Italy, 
June 21 - 24 2009. 

[10] Beckers B., Calcul par la méthode des images 
de la réflexion spéculaire dans des enceintes 
prismatiques convexes, Report Acou 003, 
http://heliodon.net/, 2017. 

[11] Beckers B., Beckers P., Reconciliation of 
Geometry and Perception in Radiation Physics, 
FOCUS Series in Numerical Methods in 
Engineering, Wiley-ISTE, July 2014, 192 
pages. 

[12] Lambert J.H., Photometria sive de mensura et 
gradibus luminis, colorum et umbrae, 
Augsburg, C. Detleffsen for the widow of 
Eberhard Klett, 1760. 

[13] Tokdar S.T., Kas R.E., Importance Sampling: 
A review, WIREs Comp. Stat 2010, 2, pp 54 – 
60. 

[14] Krokstad A., Strom S., Sorsdal S., Calculating 
the acoustical room response by the use of a ray 
tracing technique, Journal of Sound and 
Vibration, 8 (1968), pp 118 - 125. 

[15] Randall, D.A., Ringler, T.D., Heikes, R.P., 
Jones, P and Baumgardner J., Climate 
modeling with spherical geodesic grids, 
Computing in Science & Engineering , Volume 
4, Issue 5, Sept.-Oct. 2002 pp 32 – 41.  

[16] Gregory M.J., Kimerling A.J., White D., Sahr 
K., A comparison of intercell metrics on 
discrete global grid systems, Computers, 
Environment and Urban Systems 32 (2008) pp 
188 – 203. 

[17] Tregenza PR., Subdivision of the sky 
hemisphere for luminance measurements, 
Lighting Research & Technology; 19 1987, pp 
13 – 14. 

[18] Crittenden R. G., Igloo Pixelizations of the 
Sky, Astro. Lett. and Communications, Vol. 37 
2000, pp 377 - 382. 

[19] Farina A., Pyramid Tracing vs. Ray Tracing for 
the Simulation of Sound Propagation in Large 
Rooms, in COMACO95, Proc. of Int. Conf. on 
Computational Acoustics and its 
Environmental Applications, Southampton, 

WSEAS TRANSACTIONS on ACOUSTICS and MUSIC Benoit Beckers

P-ISSN: 1109-9577 21 Volume 6, 2019



 

 

England, Comp. Mechanics Publ., 
Southampton 1995, pp 1 - 9. 

[20] Beckers B., Beckers P., A general rule for disk 
and hemisphere partition into equal area cells, 
Computational Geometry, vol. 45 no. 7 2012, 
pp 275 - 283. 

[21] Beckers B., Beckers P., Sky vault partition for 
computing daylight availability and shortwave 
energy budget on a n urban scale, Lighting 
Research & Technology, 46 December 2014 pp 
716 - 728. 

[22] Tsingos N., Carlbom I., Elko G., Funkhouser 
T., Kubli R., Validation of Acoustical 
Simulations in the “Bell Labs Box”, IEEE 
Computer Graphics and Applications, 2002, 22 
(4), pp 28-37. 

[23] Gu C., Zhu M., Lu H., Beckers B., Room 
impulse response simulation based on e qual- 
area ray tracing, Audio Language and Image 
Processing International Conference 
(ICALIP), 2014, Shanghai, China, pp 832 – 
836. 

[24] Borish J., Extension of the image model to 
arbitrary polyhedra, J. Acoust. Soc. Am., Vol 
75, No.6, June 1984, pp 1827 – 1836. 

[25] Lehnert H., Systematic Errors of the Ray-
Tracing Algorithm, Applied Acoustics 38 
(1993) pp 207 - 221. 

[26] Zeng X., Chen K., Sun J., On the accuracy of 
the ray-tracing algorithms based on various 
sound receiver models, Applied Acoustics 64 
(2003) pp 433 - 441. 

[27] Barron M., The subjective effects of first 
reflections in concert halls - The need for 
lateral reflections, Journal of Sound and 
Vibration 15(4) 1971, pp 475 - 494. 

[28] Thiele R., Richtungsverteilungs und Z eitfolge 
der Schallruckewurfe in Raumen, Acustica 3, 
1953, pp 291 – 302. 

[29] Bradley J.S., The evolution of newer 
auditorium acoustics measures, Canadian 
Acoustics / Acoustique Canadienne 18 4 1990, 
pp 13 - 23. 

[30] Fazenda B., Romero-Perez J., 3-dimensional 
room impulse response measurements in 
critical listening spaces, Proceedings of the 
Institute of Acoustics, 30 (6), (2009), pp 232 – 
239. 

[31] Lewers T., A combined Beam Tracing and 
Radiant Exchange computer model of room 
acoustics, Applied Acoustics, Vol. 38 no.s 2-4 
(1993), pp 161 - 178. 

 

WSEAS TRANSACTIONS on ACOUSTICS and MUSIC Benoit Beckers

P-ISSN: 1109-9577 22 Volume 6, 2019




